LAMINAR FLOW OF VAPOR BETWEEN PARALLEL DISKS
WITH INTENSE UNIFORM ASYMMETRIC SUBLIMATION

P. A. Novikov, L. Ya. Lyubin, UDC 532.542:536.42
and V. I. Balakhonova

The method of matching outer and inner asymptotic expansions is applied to the singular
problem of laminar flow between sublimating disks at large injection Reynolds numbers.

Self-similar solutions of the problem of flows of incompressible fluid in a plane channel with porous walls
and uniform symmetric injection or suction were considered in [1-3]. Self-similar solutions to the problem of
flows between parallel disks sublimating at equal rate into the gap were obtained by Samsonov et al. {4], who
also found the asymptotic form of these solutions for small injection Reynolds numbers R and predicted the
limiting form of the solution for symmetric injection at R=w.

In the present paper we congider the asymptotic form of the solution of the problem of vapor flowsbetween
disks sublimating into the gap at equal rates jx and j;*, corresponding to large R and R;.

We assume that the relative change in vapor density px at distances commensurable with the disk radius
rox (which is the linear scale of flows in the plane of symmetry of the gap) is negligibly small and, hence, the
approximation of an incompressible fluid is permissible.

The equations of motion and continuity reduced to dimensionless form and the boundary conditions have
the form
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As length and velocity scales we use half the distance between the disks hy and the vapor velocity j«/p* on the

surface of the lower disk (zx=—hx). The ratio of the sublimation rates is characterized by the parameter y =

We can assume that the boundary conditions over the gap contour are uniform and the dimensionless disk
radius rg>>1. In view of this, we considered that we could adopt the asymptotic approach corresponding to the
treatment of a model problem for disks of infinite radius (ry—«), i.e., reject investigation of the flow details
in the region of the boundary layer formed in the vicinity of the cylindrical surface r=r;. We can then use the
self-similar solution found in [4] for the considered problem
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At large R Eq. (5) is singularly perturbed. The solution of the shortened equation corresponding to it
ww'’ =0 (1)

in correspondence with the terminology used in [5] is stable to the left on the left of the inflow plane [i.e., at
z<zg, w(z") = 0) and stable to the right on the right of this plane. Hence, the boundary layer, within which
viscous dissipation effects appear and there is a sharp change in the function w" characterizing the slope of
the curve of the radial component of the velocity v, in the considered flow regimes is situated in the vicinity of
the inflow plane: z=2z°. When x = O(1) the thickness of this 1ayer is of the order £ = ]R["1 /2 In view of this, we
use the dilatation transformation ;={(z — z%/€ at the point z=2", and the problem is solved by matching two
outer and one inner asymptotic solutions [6]. ‘

The inner asymptotic expansion is constructed in the form
Wz, €)= eW, () + W, (Q) + --- - (8)
The outer asymptotic expansions for the region 0 <z < 2’ and 2% <z <2 are accordingly sought in the form

w2, &) = Wy (2) + &wy (2) + wpp (2) + -,

(2, &) = Wy (2) + Ely (2) + ety (2) — -+ ©)
The coordinate z® of the inflow plane is also sought in the form of an expansion of powers of the small param-
eter € '
20 == 20 -+ Ezo 8220 e e (10)
In the shortened Eq. (7) there is degeneracy due to annulment of the third derivative. Hence, the terms
of the outer asymptotic expansions satisfying boundary conditions (6) can be written immediately in the following
form:
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To determine the unknown coefficients c; and the constants of integration of the equations corresponding

to terms of the inner asymptotic expansion (8), we use the matching conditions in the vicinity of the inflow plane
0
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and on the right
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From the Taylor expansion of the function w(z, €) in the vicinity of z=2z"
. — 20\2
w(z, &) = W@, €)(z—2) =@ (& ¢ E—gi b
and the asymptotic expansion
w' (&, &) = —b,—eb, —e¥, — ...
it follows that
W, == — byl (14)
Thus, substitution of (8) in (5) gives
4$W, 43w,
b =0.
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The solution of the last equation satisfying the condition Wy(0) =0 has the form

WZ:A‘"‘%Z"' B l/ 22 {<§i V«lxb >®(]/§ C) Van P <_b2—0 gz)“l/:gf: C}_blc' 1

Here
x 2
D (x) = {e*x‘ dx, .
[
By substituting expressions (14) and (15) in the matching conditions (12) and (13) and equating coefficients
of equal powers of € we find the coefficients
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The leading terms of the inner asymptotic expansion (8) satisfy equations of the form (k= 3)
W, a*w, k—1 d*W_;
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The solutions of these equations could be found successively in the form of quadratures. With increase
in k, however, the right-hand side of the equation becomes a very unwieldy combination of exponential functions
and functions of the type &8y . Hence, we determine only Ws; i.e., we seek the solution, satisfying the condi-
tion W3(0) =0, of the equation

i
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From the matching conditions (12) and (13) we find the coefficients
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x2 6y, 7 V=
Using the inner asymptotic expansion (8), we can, by determining the first three derivatives of the func-
tion w at the point z= z°, reduce the considered two-point boundary-value problem to two Cauchy problems for
Eq. (5) and the equation
4 3
1 dw__, du an
R dy" dy"'
obtained from (5) by the transformation y=—z, u=w.

The initial conditions of the first problem are

2 One
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The initial conditions of the second problem are
u(—2=0; v (—)=w' (2% u"(—)=—w"(2%; '’ (—)=w'"' (2%). (19)
Problems (5), (18) and (17), (19) are solved in the range from z’ to 1 and from —2° to 1, respectively.

The least accurately prescribed initial conditions are w" (z%, w™ (2%, and u" (—z%, u™ z%. Hence, for
more accurate calculations at not very large |R| these conditions should be made more accurate, which can be
done without determining the next term of the inner asymptotic expansion (Wy).

If, forthe functions w" and u" outside the boundary layer formed near the inflow plane z=z2’, we introduce

the symbols wl, and u}, it is obvious that when accurate initial conditions are used we would have wf =c, and
ul =—cy, where
I
RSIZ
Thus, if we select for correction of the initial conditions a sufficiently large value of R =R, we canassume
that the corresponding correction to w" (z% is

1 - .
Cj:CjoT? Cjp+ cp+0(R™3) (j=1, 2) (20)

Ca— 6~ W, (Ry) —u (Ry) ~

.2 )
To calculate the right-hand side we use the results of a computer solution of Cauchy problems with initial con~-
ditions determined accurately to the terms written in (18) and (19). Coefficients c; and c, are found accurate to
the terms written in (20). The dependence of the corresponding correction on R is given by the asymptotic equa-
tion

Aw" (2% R, =~

W4 (O
R

Thus, after determination of this correction for some value of R=R we can find W*(0) with corresponding
accuracy

Aw' (2, R) = +OR*). (21)

W) (0) = RAw’ (8, Ry) -~ O(R™%)

and use formula (21) to calculate the correction for different R and a fixed value of the parameter y.
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Fig. 1. Profiles of func-

tions—w'(z).

To make w™ (z°) more accurate we can use a linear interpolation. For this purpose a computer is used
to solve two Cauchy problems corresponding to Eq. (5) with initial conditions (18) and the conditions obtained
from (18) by the introduction of a small perturbation & of w™ (z%, i.e., replacement of this quantity by the
number w™ (z% + 6. The values of the second derivative obtained in this case outside the boundary layer
W"w[w"’ (zo)] and w"  [w™ (z%) + 6] are used to calculate the correction to w™ (z%)

{c,—w [w" ("1} &

T 0y R .
Aw (Z ) = Ay ( 4 ) = &'; [w/// (ZO) — 6] ___w; [w/// (20)]

The corrections for other values of R (with y fixed) can be obtained from the equation

_W{ir__(ﬂ — O(R™, (22)

Ao @ R) =

where W, (0) =V RyAw'"’ (2%, R,) -~ O(R7'/%).

The profiles of function w'(z) (Fig. 1), which is proportional to the radial component of the velocity v,
were plotted from the results of solution of the corresponding Cauchy problems with the initial conditions cor=-
rected by the asymptotic equations (21) and (22). Curves 1, 2, and 3 correspond to the regimes R=—50, y =1;
R=-100, y =3/4; R=-50, ¥ =1/2. The calculated values of w(—1) and w(l) differ from —1 and y, respectively,
by (1~2) 1073, The deviation of the calculated values of w'(z 1) from 0 is of the same order.

It was assumed above that the parameter y characterizing the asymmetry of sublimation is on the order
of 1. It is apparent from the structure of the outer and inner expansions that the plofted asymptotic curve has
a meaning if the conditions [R['Y/2<« y<« [R|¥? are satisfied.

At the same time, for several areas of modern technology (sublimation vacuum drying) a study of similar
processes involving unilateral sublimation, when y =0, is important. The construction of the asymptotic forms
corresponding to large |R| in this case is, on one hand, a much more complex problem, than when y~1 and, on
the other hand (there is no special need for this), when y =0 the analysis of all the regimes reduces to con-
struction of a single~parameter family of solutions of Eq. (5) satisfying the conditions

w(0)=1, @ 0 =0; w(2)=0; (2 =0.
The variable parameter is the number R contained in Eq. (5). This boundary-value problem is easily reduced
to a Cauchy problem for an equation not containing the parameter
LT BT (23)
dz* . dz?
which was obtained by the introduction of new variables (similar to those proposed in [2]) z=B(2—2), w(2) =
w (2 — z/8) =—af(z), B = aR. The initial conditions containing the variable parameter v have the form
fO =0, f (0 =0, f"(0) =1, ['"(0) = —, (24)
i.e., f=£(z, v}, where points on the positive semi-axis 0 <Y <« correspond to the parameter Yy characterizing
the specific solution. For each selected value of v, Eq. (23) is integrated in the limits from 0 to zo, where z° is

selected from the condition f'(z% =0. It is obvious that z° =28 and R=—p3f(28) will correspond to the obtained
solution.

Thus, taking several values of parameter ¥y we can obtain a fairly complete representation of flows of
vapor with unilateral sublimation characterized by R in the range —« <R <0.
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NOTATION

T'x, Zx, Cylindrical coordinates; vx, wy, radial and transverse velocity components; 2h, distance between
disks; jx, jix, rates of sublimation of lower (z=—1) and upper (z=1) disks; Px, pressure; py, density; u,,
dynamic viscosity; wik(i=1, 2), terms of outer asymptotic expansions (9); ci(i=1, 2), coeff1c1ents of (11); Wy,
terms of inner asymptotic expansion (8); z', dimensionless coordinate of inflow plane; Zk , terms of expansion
(10}; R=—jihufu.; Ri=—jidifite;  p=jdis; v=tandfe W=w. /i r=rih,; z2=2/h P=P. /].‘
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RHEOLOGICAL PROPERTIES OF HOMOGENEOUS FINELY
DISPERSED SUSPENSIONS. STEADY FLOWS.

Yu. A. Buevich and I. N. Shchelchkova UDC 532.529.5:532.135

Expressions are obtained for the rheological parameters (effective viscosity, force of inter-
phase interaction, etc.) of a moderately concentrated suspension of spherical particles. The
equations of motion of the suspension and of its phases are written.

A situation when the characteristic spatial scale of the average motion of a dispersed medium is far
greater than its internal structural scale, so that it is natural to use the methods of the mechanics of con-
tinuous media to describe such motion, is very common in applications. Two fundamental problems arise in
this case: to obtain the conservation equations describing the average flow of the phases of the medium and to
formulate the rheological equations closing them. In connection with the wide prevalence of dispersed media
in various fields of practical activity, boththese problems have been discussed in a very large number of
reports using the most varied theoretical and experimental methods for media of the most varied types.

For systems consisting of a continuous phase and discrete elements of a dispersed phase distributed in
it, the first problem was formally solved in [1, 2] using the well-developed method of averaging of the local con-
servation equations, which are valid within the materials of the phases, over the ensemble of possible configura -
tions of particles of the dispersed phase. (Bibliographies of research in this field are also presented in the
cited reports.) The basic method of solving the second main problem was also indicated in [1, 2], but it was
studied concretely only for steady streams of a monodispersed medium containing fine spherical particles in
the case when their volume concentration is not too high, so that in averaging over the ensemble one can
neglect the nonoverlapping of the solid spheres in the first approximation. In this case the suspension was
analyzed as a macroscopic homogeneous "one-velocity™ medium.* Analogous problems for the process of
heat or mass exchange in a granular medium were considered in [3].

*The results of [1, 2] are presented in Russian in the following preprints: Yu. A. Buevich and I. N. Shchel--
chkova, "Continuous mechanics of monodispersed suspensions. Conservation equations,™ and Yu. A. Buevich,
B. S. Endler, and I. N. Shchelchkova, "Continuous mechanics of monodispersed suspensions. Rheological equa-
tions of state," Preprint Nos. 72 and 85, Inst. Prikl. Mekh. Akad. Nauk SSSR, Moscow (1976} and (1977).
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